
International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

52

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

Many software organizations today are confronted with challenge of building secure software systems.

Traditional software engineering principles place little emphasis on security. These principles tend to tread

security as one of a long list of quality factors that are expected from all professionally developed software. As

software systems of today have a wide reach, security has become a more important factor than ever in the

history of software engineering can no longer be treated as Separate Island. There is an imperative necessity

to incorporative security into software engineering. Incorporating security into software engineering

necessitates modification of existing software engineering principles, as these have to be tailored to take into

account the security aspect. All phases of software engineering are likely to be impacted. In this paper we tried

a novel security mechanism in system development life cycle.

Keyword: Security, Design Phase, SDLC.

A SECURITY APPROACH IN SYSTEM DEVELOPMENT

LIFE CYCLE

Mathan Kumar M

1
, Dr. Anu Bharti

2

1
Research Scholar, Dept. of Computer Science & Engineering, Sunrise University, Alwar

2
Asso. Prof., Dept of Computer Science & Engineering, Sunrise University, Alwar

ABSTRACT

INTRODUCTION

In the software industry that requirements engineering is critical to the success of any major

development project. Security requirements are identified during the system development lifecycle.

However, the requirements tend to be general mechanisms such as password protection, spam and

Phishing detection tools. Often the security requirements are developed independently of the rest of

the requirements engineering activity, and hence are not integrated into the mainstream of the

requirements activities. As a result, security requirements that are specific to the system

and that provide for protection of essential services and assets are often neglected. The requirements

elicitation and analysis that is needed to get a better set of security requirements seldom takes place.

Users may not have aware of the security risks, risks to the mission and vulnerabilities

associated with their system. To define requirements, systems engineers may, in conjunction with

users, perform a top-down and bottom- up analysis of possible security failures that could cause risk

to the organization as well as define requirements to address vulnerabilities. Fault tree analysis for

security is a top-down approach to identifying vulnerabilities. In a fault tree, the attacker’s goal is

placed at the top of thetree.

International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

53

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

Then, the analyst documents possible alternatives for achieving that attacker goal. For each

alternative, the analyst may recursively add precursor alternatives for achieving the sub goals that

compose the main attacker goal. This process is repeated for each attacker goal. By examining the

lowest level nodes of the resulting attack tree, the analyst can then identify all possible techniques for

violating the system’s security preventions for these techniques could then be specified as security

requirements for the system.

Failure Modes and Effects Analysis is a bottom-up approach for analyzing possible security

failures. The consequences of a simultaneous failure of all existing or planned security protection

mechanisms are documented, and the impact of each failure on the system’s mission and stakeholders

is traced. Other techniques for developing system security requirements include threat modeling and

misuse and abuse cases. Requirements may also be derived from system security policy models and

system security targets that describe the system’s required protection mechanisms.

The SQUARE process involves the interaction of a team of requirements engineers and the

stakeholders of project. The requirements engineering team can be thought of as external consultants,

though often the team is composed of one or more internal developers of the project. When SQUARE

is applied, the user should expect to have identified, documented, and inspected relevant security

requirements for the system or software that is being developed. SQUARE may be more suited to a

system under development or one undergoing major modification than one that has already been

fielded, although it has been used both ways. Software life-cycle models describe phases of the

software cycle and the order of execution of those phases. Many models are being adopted by

software companies, but most of them have similar patterns. Typically each phase produces

deliverables required by the next phase in the life cycle. Requirements are translated into design.

Code is produced during the implementation phase and is driven by the design. Code is finally tested

against requirements to ensure quality. In this paper we were implemented some security principles in

Waterfall method.

PROPOSED METHOD

The Waterfall Model is the old method of structured system development. It’s the base for all

models although it has come under attack in recent years for being too rigid and unrealistic when it

comes to quickly meeting customer’s needs and development, the Waterfall Model is still widely

used because of easy model for developers. It is attributed with providing the theoretical basis for

other Process Models, because it most closely resembles a generic model for software development.

International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

54

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

The Procedure of Waterfall Model for software development:

 System Requirements:

System Requirement refers to the consideration of all aspects of the targeted business

function or process, with the goals of determining how each of those aspects relates with one another,

and which aspects will be incorporated into the system. What is the essential thing needed in

developing system

 System Analysis:

This step refers to the gathering of system requirements, with the goal of determining how

these requirements will be accommodated in the system. Extensive communication between the

customer and the developer is essential. Developer has to understand the exact requirement of user.

 System Design:

Once the requirements have been collected and analyzed, it is necessary to identify in detail

how the system will be constructed to perform necessary tasks. More specifically, the System Design

phase is focused on the data requirements, the software construction and the interface construction.

 Coding:

Allies name is programming, this step involves the creation of the system software.

Requirements and systems specifications from the System Design step are translated into machine

readable computer code.

 Testing

As the software is created and added to the developing system, testing is performed to ensure

that it is working correctly and efficiently.

In every system development has its own strategy and methodology but where lies the security aspect

in system development life cycle? This is the very big problem in system development in this paper

International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

55

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

we provide some security methods to enhance the water fall model. Security in Design Phase:

In every phase we have to include the security enhancement. Even though it’s very essential

for every phase depth security features needed from the design phase onwards. In requirement

gathering phase information fetching mostly happen between user and developer due to that need of

security level will be less. Apart from the user collecting information should be trust worthy as well

as valid information should be taken for the system development. In analysis phase, the information’s

what we obtain from the requirement phase that will give to the analysis phase. Collected information

will be analysis used some valid documents materials, white papers, existing methods, etc.

Information grouped into the structure form from the unstructured form. In the analysis phase

itself we have to estimate what kind of security requirements need for our system. Security elements

and features should be included in every aspect of the system like user, data, module, design, testing,

etc.

Developers need to know secure software design principles and how they are employed in the

design of resilient and trustworthy systems. Two essential concepts of design include abstraction and

decomposition of the system using the architecture and constraints to achieve the security

requirements obtained during the requirements phase. Most of the readers are probably familiar with

these concepts.

Abstraction is a process for reducing the complexity of a system by removing unnecessary

details and isolating the most important elements to make the design more manageable.

Decomposition is the process of describing the generalizations that compose an abstraction. One

method, top-down decomposition, involves breaking down a large system into smaller parts. For

object-oriented designs, the progression would be application, module, class, and method. Other

secure software design principles are detailed in a multitude of books, white papers, web portals, and

articles. In this paper we are providing some techniques to improve the SDLC.

First thing is minimize the no of high consequence targets. Minimizes the number of actors in

the system granted high levels of privilege, and the amount of time any actor holds onto its privileges.

Ensures that no single entity should have all the privileges required to modify, delete, or destroy the

system, components and resources. Separation of domains makes separation of roles and privileges

easier to implement.

DON’T EXPOSE VULNERABLE OR HIGH- CONSEQUENCE

COMPONENTS:

 Keep program data, executables, and configuration data separated. .Reduces the likely hood

that an attacker who gains access to program data will easily locate and gain access to

program executables or control/configuration data.

International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

56

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

 Segregate trusted entities from un trusted entities, Reduces the exposure of the software‘s

high- consequence functions from its high-risk functions, which can be susceptible to attacks.

 Assume environment data is not trustworthy, reduces the exposure of the software to

potentially malicious execution environment components or attacker- intercepted and

modified environment data.

 Use only safe interfaces to environment resources; this practice reduces the exposure of the

data passed between the software and its environment.

 Minimize the number of entry and exit points; this practice reduces the attack surface.

DENY ATTACKERS THE MEANS TO COMPROMISE

 Simplify the design; this practice minimizes the number of attacker-exploitable vulnerabilities

and weaknesses in the system.

 Hold all actors accountable, this practice ensures that all attacker actions are observed and

recorded, contributing to the ability to recognize and isolate/block the source of attack

patterns.

 Avoid timing, synchronization, and sequencing issues, this practice reduces the likelihood of

race conditions, order dependencies, synchronization problems, and deadlocks.

 Make secure states easy to enter and vulnerable states difficult to enter, this practice reduces

the likelihood that the software will be allowed to inadvertently enter a vulnerable state.

 Design for controllability, this practice makes it easier to detect attack paths, and disengage

the software from its interactions with attackers.

 Design for secure failure, Reduces the likelihood that a failure in the software will leave it

vulnerable to attack.

In large distributed systems, scale-up problems related to security are not linear because there

may be a large change in complexity. A systems engineer may not have total control or awareness

over all systems that make up a distributed system. This is particularly true when dealing with

concurrency, fault tolerance, and recovery. Problems in these areas are magnified when dealing with

large distributed systems. Controlling the concurrency of processes presents a security issue in the

form of potential for denial of service by an attacker who intentionally exploits the system’s

concurrency problems to interfere with or lock up processes that run on behalf of other principals.

Concurrency design issues may exist at any level of the system, from hardware to application. Some

examples of and best practices for dealing with specific concurrency problems, includes

 Processes Using Old Data: Propagating security state changes is a way to address this

problem.

International Journal of Innovations in Scientific Engineering http://www.ijise.in

(IJISE) 2016, Vol. No. 4, Jul-Dec e-ISSN: 2454-6402, p-ISSN: 2454-812X

57

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING

 Conflicting Resource Updates: Locking to prevent inconsistent updates is a way to address

this.

 Order of Update in Transaction-Oriented Systems and Databases: Order of arrival and

update needs to be considered in transaction- oriented system designs. System Deadlock, in

which concurrent processes or systems are waiting for each other to act this, is a complex

issue, especially in dealing with lock hierarchies across multiple systems. However, note that

there are four necessary conditions, known as the Coffman conditions.

In above passage we provided some of security enhancement in design phase in future work we

will consider the throughout the development life cycle.

CONCLUSION:

In this paper we started our initiation process of our research and we gave some suggestion to

enhance the security mechanism to improve the system development life cycle. In our forthcoming

papers we will give security principles throughout the lifecycle. It’s our faith it will give better result

than the ordinary development life cycle models. Compare with SQUARE and CLASP methods this

one is different in functionalities.

REFERENCES:

[1] Mead, N.R., Viswanathan, V., Padmanabhan, D., and Raveendran, A., Incorporating Security

Quality Requirements Engineering (SQUARE) into Standard Life-Cycle Models. Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 2008.

[2] Ambler, S. W. A Manager’s Introduction to Rational Unified Process,2005.

[3] Kruchten, P. The Rational Unified Process: An Introduction, 3rd ed. Boston, MA: Addison-

Wesley,2003.

[4] Mead, N. R., E. Hough, and T. Stehney. Security Quality Requirements Engineering (SQUARE)

Methodology. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2005.

[5] Rational Unified Process: Best Practices for Software Development Teams. Rational

Software White Paper TP026B, Rev 11/01,2001.

